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Background 

 The fatigue resistance of asphalt binder strongly 
influences the fatigue performance of asphalt mixture 
and pavement 
 

 None of the existing test methods for asphalt binder 
was able to provide parameters consistently correlated 
with relative cracking performance of mixtures, 
including  
o DSR (G*sinδ), Elastic Recovery (ER), and  

o Force-Ductility (FD) 



 Fracture energy is a good indicator of fatigue resistance 
of asphalt mixtures 
 

 Cumulative energy to failure from FD results showed 
improved ability to predict cracking performance at 
intermediate temperatures  
o FD was not optimized to determine fracture energy 

accurately 
 

 A test designed to obtain fracture energy could provide a 
better parameter related to fatigue resistance of binder 

 
 

Background (Cont.) 



 
 Traditional Direction Tension (DT) test has limitations. 

 
 
 

 

 Long middle part with uniform area:   
o Specimen may crack anywhere → high deviation in measured 

failure strain 
o Often results in premature failure 
o Difficult to apply high enough strain rate to reduce excessive 

deformation 
o May exceed loading rate capacity of equipment without fracture. 

Background (Cont.) 



 There is a need to develop a new DT test that allows for 
accurate determination of stress-strain relationships and 
fracture energy density (FED) of binder at intermediate 
temperatures.  

Background (Cont.) 

 UF research group developed a binder fracture energy 
(BFE) test with: 

o Specially designed specimen geometry; and 

o Data interpretation procedure. 



3-D Specimen Shape  Stress Distribution on Cross-Sections 

 A 5×5 mm uniform stress distribution area 

 Stress Concentration Factor is around 11.0 

Geometry Development 
No.1:  3-D FEA 



Geometry Development 
No.1: Prototype Test 

 Adhesion between asphalt and loading head was 
less than Cohesion of asphalt 

 Need to modify the specimen shape 

 

Test on MTS Machine Asphalt peeled off from load head 



Geometry Development 
No.2:  3-D FEA 

 Fairly uniform stress concentration area at the center 
 Stress concentration factor is greater than 5 

Bottleneck Shape Stress Distribution on Cross-Sections 



Geometry Development 
No.2: Prototype Test 

 Adhesion between asphalt and loading head was less 
than Cohesion of asphalt 

 Need to strengthen connection between asphalt and 
loading head and reduce any high stress at the corners 
of loading head 
 



Geometry Development 
No.3:  3-D FEA 

Stress Distribution on Cross-Sections Horizontal Cross Section 

 Fairly uniform stress concentration area at center 
 Stress concentration at contact surface of loading head 

eliminated 



Geometry Development 
No.3: Prototype Test 

Testing Equipment Crack at Center 

b 



 Data analysis procedure  
 

o FEM modeling 

o Large strain deformation  
 

  

Data Interpretation 

True stress  
& true strain 

Account for ductile cracks that clearly exhibit 

necking because of larger deformation to failure 
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Figure 2 

Data Interpretation 
Determination of True Strain and Stress 
 Up to the first stress peak 

 - FEA based on large deformation formulation was used 

Transforming Extension to True Strain 

y = 0.0006x2 + 0.0537x 
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y = 0.0086x2 + 0.132x + 3.0 
R² = 1 
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Calculating Area of Cross-Section at Peak Calculating Length of 3mm Part at Peak 

 At the first stress peak 
 - Length and Cross-sectional Area can be determined using 
FEA with large deformation formulation 

Data Interpretation 
Determination of True Strain and Stress (Cont.) 
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A. Before testing 
 - Length = 3mm 

Length of Middle Part: 

B. At the first stress peak 
 - Length = L1 

C. After the first stress peak 
 - The middle part undergoes 
necking  

Data Interpretation 
Determination of True Strain and Stress (Cont.) 



Data Interpretation 
Determination of True Strain and Stress (Cont.) 
 After the first stress peak 

L
LAA )( 11 ⋅=

A
F

=σ









=

1

ln
L
Lε

Assume most strain occurs in the 
middle 3mm of the specimen, and 
use large strain formulation 
 
 
 
 

True Stress: 
 
 
True Strain:  
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 After applying these calculation procedures, the point of 
initial fracture is clear 

 The post-peak energy after the point of initial fracture 
should not be considered 

Example: 

Binder Type: PG 67-22  

Testing temperature: 15 ˚C 

Displacement rate: 500mm/min 

fracture First stress  
peak 

Large deformation 
FEA 

Large strain 
formula: ε = ln(L/L1) 

Data Interpretation 
Determination of Fracture Energy Density 



Premature Failure Identification 

 At low temperatures and/or faster loading rates, any 
imperfection of specimen may result in premature failure 
 

 Premature failure can be identified based on 
o Geometric characteristics of failed specimen 
o Fracture energy density 
o True stress-strain curve 

 

 Implication: there is an optimal combination of 
temperature and  loading rate range to consistently 
obtain fracture energy of binder 
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Premature Failure Identification (Cont.) 



Tests and Analyses of Binders 
o Preliminary Tests 

o SUPERPAVE Section Recovered Binders 

oHybrid and Highly Polymer-modified Binders 



Preliminary Tests 

 Tests were run on the MTS machine 

 Test temperatures: 0, 5, 10, 15, 20 ˚C 

 Various loading rates: depend on the test temperature 

 PAV-aged Binders:  

o PG 67-22 (unmodified) 

o PG 76-22 (SBS Polymer modified) 

                  



Fracture Energy Density at 15 ˚C 

 Consistent for the same binder at different loading rates  

 Clearly differentiates between SBS-modified and 
unmodified binders 

Fracture Energy Density at 15 ˚C: 



 The average FED values are consistent for the same 
binder at different temperatures 

 The difference between PG 76-22 and PG 67-22 is clear 

Average FED at Each Temperature 

Average Fracture Energy Density  
at Various Temperatures 



Summary of Preliminary Tests 

 15 ˚C appeared to be the optimal test temperature 
for both PG 67-22 and PG 76-22                  

 

 An optimal or acceptable range of loading rate 
should be used to obtain consistent and accurate 
fracture energy 

o Avoid premature fracture and excessive 
deformation 



 Recovered from asphalt mixtures of 12 Superpave 

Projects :  

o Unmodified binders: AC-30, AC-20, PG 64-22 
o SBS polymer modified binder: PG 76-22 
o Rubber modified binder: ARB-5 

Binders Recovered  
from Superpave Sections (Cont.)  

Of note, RAP binder was present in the recovered binders 
because RAP is routinely used in Florida.  



AC-20 recovered, FED vs. Loading Rate  

Binders Recovered  
from Superpave Sections (Cont.)  

 Test temperature: 

15 °C 

Multiple loading 

rates 

o FED was consistent at 
different loading rates.  



o The BFE test clearly distinguished between different 
types of binder.  

Fracture Energy of binders recovered from Superpave sections   

Rubber not 
recovered 

Binders Recovered  
from Superpave Sections (Cont.)  



 All the binders are PAV residues 

o 3 types of hybrid binder:  

 Wright: rubber and SBS   

 Hudson:  3.5% rubber+2.5%SBS  

 Geotech: 8% of rubber + 1% SBS 

o 1 type of highly SBS modified binder: PG 82-22 

Hybrid Binders and  
Highly Polymer Modified Binder 



Hybrid Binders (Wright, Hudson, Geotech) 

Hybrid binders, FED vs. Loading Rate 

  For the same binder, FED is consistent. 
  The difference between different hybrid binders is clear. 



 FED of PG 82-22 is consistent regardless of loading 
rate and temperature. 

PG 82-22, FED vs. Loading Rate 

PG 82-22 (Cont.) 



Fracture Energy Density of various binders 

Binder FED Results: PAV residue 



 Statistical analyses showed: 

o The BFE test effectively differentiated between binders 
in terms of FED 

o For the same binder, the FED is independent of loading 
rate and temperature in a certain range 

 It indicates that FED is a fundamental property of 
binder  

o It can be determined by tests performed at a single 
temperature and loading rate 

 

Results of Statistical Analyses 



Testing Standard Development 
o Binder conditioning  
 RTFO +PAV (AASHTO 315)  

o Displacement rate and testing temperature  
 500 mm/min at 15°C (Recommended) 

o A broad range of asphalt binders 



Materials 
Binder Types Modifying Components 

Unmodified 
binders 

PG 52-28 

None PG 58-22 
PG 64-22 
PG 67-22 

Rubber-
modified 
binders 

ARB-5 5% Type B GTR 

ARB-12 12% Type B GTR 

Hybrid 
binders 

(rubber plus 
polymer) 

Hybrid A 1% SBS (approximately 30 mesh, incorporated 
dry), 8% of Type B GTR, 1% hydrocarbon 

Hybrid B 3.5% crumb rubber, 2.5% SBS, 0.4%-plus Link 
PT-743-cross linking agent 

Hybrid C 10% rubber, 3±0.1% radial SBS 
PG 76-22 ARB I 7 - 7.5 % GTR and SBS (optional) PG 76-22 ARB II 

Polymer-
modified 
binders 

PG 64-34 PMA 7.5% SBS content 
PG 76-22 PMA I 2-3.5 % SBS 
PG 76-22 PMA II 2-4.25 % SBS 
PG 82-22 PMA 8.5% SBS 



Typical True Stress-True Strain Curve 
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AASHTO Provisional Standard 



Conclusion 

 The BFE test and data interpretation system developed 

suitably measures FED of asphalt binders, including: 

o Unmodified binder 

o Modified binder (rubber, polymer, hybrid) 

o Binder recovered from pavement (except rubber)  



Recommendation 

 The BFE test may be an effective tool for binder 

specification by state highway agencies to: 

o Identify the presence of modifiers 

o Provide a quantitative assessment of relative binder 

performance based on FED values  
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